ESTRUCTURAS MEMBRANALES DE ESPESOR NO UNIFORME

Las siguientes consideraciones son aplicables a aquellas cascaras de normigón armado que, supuestas en régimen mernbranal, estén sometidas a la acción de cargas verticales permanentes variables de punto a punto, conforme a una determinada ley de variación. El presente trabajo tiene por objeto precisamente el establecimiento de dicha ley, de modo tal do obtener un régimen de cargas capaz de generar en la mombrana un cuadro de esfuerzos internos impuesto de antemano.
El problema presenta cierta analogia formal con el procedimiento empleado en la tecria de los arcos, que consiste en hallar el diagrama de cargas cuyo antifunicular coincide con el eje del mismo arco, de modo de anular los momentos flectores provocados en la pleza por ese y sólo ese estado de cargas.
El criterio que se expondrá parte de las premisas que deben cumplir las membranas para que puedan ser aplicadas las ecuaciones de equilibrio debidas a A . Pucher, restringidas al caso de cargas verticales, en nuestro caso cargas permanentes. Para prevenir el efecto de sobrecargas accidentales que pudieran actuar sobre toda la superficie en forma simultánea -hipótesis de adopción frecuente en el cálculo de estructuras mem-branales- se puedon mayorar adecuadamente los esfuerzos hallados, o bien minorar las tensiones de servicio tanto del hormigón como de la armadura, en la proporción requerida por cada caso particular.
Para materializar el régimen de cargas necesario a loa fines propuestos, se podrá recurrir a uno de los sigulentes procedimientos constructivos:
a) Variar en cada punto el espesor de la membrana.
b) Conservar dicho espessor constante, pero agregando un relleno inerte de espesor varlable on cada punto, conforme al peso total requerido
c) Combinar a voluntad los dos procedimientos anteriores.

En lo que sigue, y solo por razones de comodidad, no aludiremos más que al primero de estos recursos, entendido que puede optarse por cualquiera de los otros dos, sin perjuicio de la validez del resultado perseguido.
El método operativo al que arribaremos no requiere la resolución de ecuaciones diferenciales, ni la determinación de incógnitas por diferencias finitas, o la confección y puesta a punto de programas para computación. Estas tareas, en algunos casos, pueden llegar a ser tan arduas, que con frecuencia desalientan el empleo de formas estructurales Inéditas, particularmente cuando se trata de obras de magnitud reducida o que no han de construirse repetidamente. El criterio expuesto aqui sólo exige operaciones matemáticas muy sencillas, de manejo habitual en la práctica ingenieril, y en esto entendemos estriba parte de su utilidad, por cuanto permite explorar en forma rápida las posibilidades de una forma geométrica dada, obteniéndose de inmediato una información intuitiva de su
comportamiento. Podrán asi modificarse por via tentativa y con suficiente agilidad, los diversos parámetros que definirán el equilibric, ya sea la forma de la cáscara o de su contorno, las condiciones de borde, la posición de la estructura en el espacio, etc.
Por otra parte, y dado que el plexo tensional, dentro de ciertos limites, puede ser elegido por anticipado, los esfuerzos de membrana pueden disponerse de manera de eliminar determinados efectos sobre los bordes, o contribuyendo a equilibrar el peso propio de las nervaduras portantes.
El conjunto de parámetros que puede variarse a voluntad, aún para una misma cáscara, conduce a un número ilimitado de combinaciones constructivas. Por ello, las resoluciones numéricas que se incluyen, no pretenden sino brindar algunos elementos de juicio para facilitar las comparaciones con estructuras conocidas.

Sea la superficie definida por la función:

$$
z-f(x, y)
$$

Figura 1
referida a una terna ortogonal X, Y, Z, (fig. 1). De dicha superficie se ha aislado un elemento de mambrana de lados ds1 y ds? y de eapesor δ, siendo g su peso y y el peso especifico del material consideraco.
Los demás parámetros consignados en la figura tienen el significado corriente que les asigna la teoria membranal.
El peso de dicho elemento de cáscara, por unidad de superficie proyectada sobre el plano Y-O-X valdrá:

$$
\begin{equation*}
z=\frac{g}{d x d y}=\frac{d A}{d x d y} \gamma \delta \tag{1}
\end{equation*}
$$

siendo $d A$ el área del cuadrilatero elemantal $d \rho$ lados $d s_{1} y d s_{2}$. Si llamamos:

$$
p-\frac{\partial z}{\partial x} ; \quad q-\frac{\partial z}{\partial y}
$$

sebemos que:

$$
d A=\sqrt{1+\rho^{2}+q^{2}} d x d y
$$

que taemp"azada en (1):

$$
\begin{equation*}
z-\gamma \delta \sqrt{1-p^{2}+q^{2}} \tag{2}
\end{equation*}
$$

Por otra parte, el sistema d₹ ecuacionss generales para ol equilibrio de las cáscaras, en el caso de cargas verticales se reduce a:
(3) $\left\{\begin{array}{l}\frac{\partial \bar{N} x}{\partial x}+\frac{\partial \bar{N} y x}{\partial y}-0 \\ \frac{\partial \bar{N} y}{\partial y}+\frac{\partial \bar{N} x y}{\partial x}-0 \\ \frac{\partial^{2} z}{\partial x^{2}} \bar{N} x+\frac{\partial^{2} z}{\partial y^{2}} \bar{N} y+2 \frac{\partial^{2} z}{\partial x \partial y} \bar{N} x y--z\end{array}\right.$

$$
\begin{equation*}
\dot{N}_{x y}=\bar{N} y x \tag{3d}
\end{equation*}
$$

Si convenimos en llamar:
$\tau=\sqrt{1-p^{2}+q^{2}} ; r-\frac{\partial^{2} L}{\partial x^{2}} ; s=\frac{\partial^{2} z}{\partial x \partial y} ; t=\frac{\partial^{2} z}{\partial y^{2}}$
obtendremos, sliminando Z de las expresiones (2) y (3):

$$
\begin{equation*}
\frac{\partial \bar{N} x}{\partial x}+\frac{\partial \bar{N} x y}{\partial y}=0 \tag{4a}
\end{equation*}
$$

14)

$$
\left\{\begin{array}{l}
\frac{\partial \tilde{N} y}{\partial y}+\frac{\partial \tilde{N} x y}{\partial x}=0 \\
\text { r. } \dot{N} x+\text { t. } \bar{N} y+2 s \cdot \bar{N} x y--\delta \tau \tag{4c}
\end{array}\right.
$$

Sistema de tres ecuaciones diferenciales con cuatro funciones incógnitas, a saber;

$$
\bar{N} x \text {; } \overline{N y} ; \bar{N} x y ; \delta ;
$$

Será posible entonces atribuirle a una de ellas un valor arbitrario, función a su vez de $x \in y$.
En al presante desarrollo nos limitaremos al examen de un
caso muy particular, que sa obtiene introduciendo en (4) la función arbitrarla:

$$
\overline{\mathrm{N}} \mathrm{xy}-\mathrm{C}_{1}-\text { constante }
$$

que aún siendo la más sencilla que pueda darse, permite el análisis de una gran variedad de casos, algunos de los cuales se exponen más adelante.
Siendo constante $\bar{N} x y$, son nulas sus derivadas, y la ecuación (4a) se reduce à:

$$
\frac{\partial \bar{N} x}{\partial x}-0
$$

que integrada resulta:

$$
\bar{N} \mathrm{x}=\mathrm{C},(\mathrm{y})
$$

0 sea que $\bar{N} x$ es igual a su constante de integración. El valor (y) entra paréntes's significa que si bien $\overline{\mathrm{N} x}$ no es función de $\mathrm{x}_{\text {, }}$ puede serlo de la variabla y. Análogamente:

$$
\tilde{N} y-C_{3}(x)
$$

que se obtiene de (4b).
Aqui como en el caso de reso'ucl'ón general de las ecuaciones de equilibrio, las condiciones de vinculo de la membrana permitirán determinar las constantes de integración.
Si ahora en la (4c) despajamos of oblendremos:
$\delta--\frac{1}{\gamma}\left(\frac{r}{\tau} \bar{N} x+\frac{t}{\tau} \bar{N} y^{\tau}+\frac{2 s}{\tau} \bar{N} x y\right)$
y llamando:
$£=\frac{\tau}{\tau} ; \quad \eta=\frac{t}{\tau} ; m=\frac{s}{\tau} ;$
la ecuación (5) podrá expresarse asi:
$8=-\frac{1}{\gamma}\{\mathcal{L} \cdot \bar{N} x+\eta \cdot \bar{N} y+2 m \cdot \bar{N} x y)^{\prime}$
£, η y m son las llamadas "Magnitudes Fundamentales de Segundo Orden" de la suparficie analizada y caracterizan a la misma.

Ejemplos de aplicación.

I) Membranas de bordes paralelos a los ejes X-Y.

Caso a). Membranas sustentadas por resbalamiento puro,
Si la estructura en estudio está limitada por un contorno cuya proyecclón sobre el plano $X-0-Y$ es un rectángulo de lados paralelos a los ajes $X \in Y, y$ si suponemos que los nervios de borde no son capaces de admitir más esfuerzos que aquéllos que les fueran aplicados según la dirección tangente a sus cjes, por carecer de rigidez en cualquier otro plano, la única forma de sustentación posible se verifica cuando:

$$
\bar{N} x-\bar{N} y=0
$$

y la ecuación (6) será:

$$
\begin{equation*}
\delta=-\frac{1}{y} 2 m \cdot \tilde{N}_{x y} \tag{7}
\end{equation*}
$$

El esfuerzo de resbalamiento $\bar{N} x y$, constante para todo punto de la cáscara, se puede fijar en forma arbitraria, con signo contrario a mporque de lo contrario el espesor 5 careceria de significado fisico. Pero esta libertad de elección queda limitada
por la condición de qua δ no debe sar, en ningún punto, inferior al minimo espesor que se establezca, sca por razones constructivas, por disposiciones reglamentarias o por cualquier otra consideración.
Para conocer las coordenadas del punto dónde δ adquiere su valor minimo, basta con observar en la ecuación (7) que δ y m son proporcionales, y por lo tanto el problema se reduco a la determinación de m mínimo. Para ello, en lugar del conocido procedimiento por derivación, hemos optado por el cálculo de los valores de m para distintos puntos de la membrana, por ejemp'o para los vértices de una grilla, tarea que por otra parte es necesaria para conocer los respectivos valores de δ en dichos vértices.
Obtenemos asi un "diagrama de cargas" vertica'es, que produce en la membrana un estado de tensiones de resbalamiento puro, por cuanto son nulos los esfuerzos $\bar{N} x$ y $\overline{N y}$ paralelos respectivamente a los ejes $X-Y$. Por lo tanto, las tensiones principales están contenidas en planos verticales paralelos a las direcciones $x= \pm y, y$ la estructura se comporta como un doble sistema do arcos comprimidos y traccionados de direcciones normales entre si.
Ejemplo Nro. 1. Hypar, Asociación de cuatro sectores de paraboloide hiperbólico. Eliminación del empuje horizontal en las apoyos.

La fig. (2) representa un cuadrante de "hypar" da ecuación:

$$
z=\frac{1}{18} \times(18-y)
$$

siendo datos:

$$
a-18 \mathrm{~m} . \quad \mathrm{b}-3 \mathrm{~m} . \quad \mathrm{f}_{1}=2 \mathrm{f}_{0}=6 \mathrm{~m}
$$

Derivando z se tiene,
$p-1+\frac{y}{18} ; q-\frac{x}{18} ; s-\frac{1}{18}$
resultando m :
$m=\frac{1}{\sqrt{648+36 y+y^{2}+x^{2}}}$
Valor con el cual se ha confeccionado el siguiente cuadro:

Punto	x	y	m	$\delta(\mathrm{~cm})$
1	0	0	0,0393	6.4
2	0	18	0,0248	4,1
3	3	0	0,0391	6,3
4	3	18	0,0247	$4 .-$

que se ha calculado por aplicación de la (7), de la cual se ha despejado el valor de $\bar{N} x y$, que queda determinado con los valores m y δ minimos (subrayados an ol cuadro anterior).

$$
\bar{N}_{\mathrm{N} y}--\frac{2,4 \cdot 0,04}{2 \cdot 0,0247}=-1,95 \mathrm{t} / \mathrm{m}
$$

En la fig. 3 se han reunido cuatro sectores de hypar, de modo de constituir un conjunto estructural que puede ser apoyado en los puntos Q y Q^{\prime}, en los cuales queda anulado todo empuje horizontal. En efecto, en los nudos O, R y O^{\prime} es fácil comprobar que las resultantes de las fuerzas que convergen a ellos, se cancelan dos a dos. En cambio, al punto Q convergen las fuerzas que provienen de los bordes $P Q$ y $P^{\prime} Q$, cuya resultante es vertical y vala:

$$
R v-2 \bar{N} x y, f_{1}
$$

y que debe ser igual a la mitad del peso total de la estructura. Acotemos que la eliminación del empuje horizontal en los apoyos, con la consiguiente simplificación constructiva que cllo implica, se debe al hecho de haber impuesto la condición:

$$
f_{1}-2 f_{0}
$$

que, cuando no existen solicitaciones normales a ninguno de los bordes, o sea cuando:

$$
\bar{N} x-\bar{N} y=0
$$

basta para garantizar el equilibrio en los términos expuestos.

FIGURA 4

Si, por el contrario, a favor del espesor uniforme, se generan en los bordes QR Q' y OR O' esluerzos normales, aparecerán a lo largo de los mismos, esfuerzos verticales sin equilibrar y la relación enunciada entre f_{1} y f_{0}, no basta en general para asegurar que el empuje horizontal en los apoyos sea nulo.
Ejemplo № 2 - Sector de superficie cónica (tig. 4).
La ecuación que define la superficie cónica a la cual pertenece ei sector da vérices 1-2-3-4 es:

$$
z=0,4 \sqrt{x^{3}+y^{2}}
$$

siendo sus derivadas:

$$
\begin{gathered}
p=\frac{0,4 x}{\sqrt{x^{2}+y^{2}}} ; q-\frac{0,4 y}{\sqrt{x^{2}+y^{2}}} \\
s-\frac{-0,4 x y}{\sqrt{\left(x^{2}+y^{2}\right)^{3}}}
\end{gathered}
$$

expresiones que nos permiten cacular:

$$
m-\frac{s}{\tau}=-\frac{0,37 x y}{\sqrt{\left(x^{2}-y^{2}\right)^{3}}}
$$

Como en el ejemp.o No 1, cor ayuda de la expresión (7) se ha ca'culado el cuadro siguiente:

Punto	x	y	z	$-m$	$\delta(\mathrm{~cm})$	$\overline{\mathrm{N} x y(t / m)}$
1	4	4	227	0,0335	15	5,50
2	4	12	5,05	$\underline{0,0086}$	4	$"$
3	12	12	6,80	$\overline{0,0108}$	$\overline{5}$	$"$
4	12	4	5,05	0,0086	4	$" 1$
5	8	8	4,52	$\underline{0,0162}$	$\overline{7,5}$	$"$

Ejemplo No 3.

Conoide de directriz sinusoidal. (fig. 5)

FIGURA s

La superficie propuesta responde a la ecuación:

$$
z-\frac{y}{5} \operatorname{sen} \frac{\pi x}{10}
$$

Con los datos de la lig. 5.

Procediendo como en los casos anteriores, se consignan los resultados a continuación:

$$
\begin{aligned}
& p-\frac{\pi y}{50} \cos \frac{\pi x}{10} ; q=\frac{1}{5} \operatorname{sen} \frac{\pi x}{10} \\
& s=\frac{\pi}{50} \cos \frac{\pi x}{10} \\
& \pi \cos \frac{\pi \mathrm{x}}{10} \\
& 50 \sqrt{1+\frac{\pi^{2} y^{2}}{2.502}} \cos \frac{2 \pi x}{10}+\frac{1}{25} \operatorname{sen} \frac{2 \pi x}{10}
\end{aligned}
$$

Caso b) - Las direcciones principales coinciden con los ejes $X-Y$.
En este caso, impondremos la condición: $\bar{N} x y-0$ para todo punto de la cáscara. Los bordes, siempre paralelos a los ejes X-Y, deberán tener rigidez adecuada para recibir los astuarzos $\mathrm{Nx}-\mathrm{Ny}, \mathrm{y}$ conduairlos hasta los apoyos.

FIGURA 6

El ejemp'o siguiente se presta para introducir el peso propio do uno de los nervios de borde en las ecuaciones de equilibrio de la mombrana.
Ejemplo № 4. Superficie de cuarto orden, con carga debida al peso propio da una nervadura de borde.
La fig. (6) representa la ecuación:

$$
z=h\left(\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{2}}-\frac{x^{2} y^{2}}{a^{2} b^{2}}\right)
$$

siendo datos:
$h=2,5 \mathrm{~m}_{\mathrm{r}} ; \mathrm{a}=5 \mathrm{~m} . ; \mathrm{b}-10 \mathrm{~m} . ; \mathrm{a} 1=4.5 \mathrm{~m}$
resultando:

$$
z=2,5\left(\frac{x^{2}}{25}+\frac{y^{2}}{100}-\frac{x^{2} y^{2}}{500}\right)
$$

La fig. (6a) representa al corte transversal de una cubierta constituida por un número indefinido de estos elementos, que tienen en común, dos a dos, un nervio de espesor $d-0.20 \mathrm{~m}$ y de altura variable c, capaz de alojar en su interior un haz de tensores de acero. Se procura con este ejemplo transferir el peso de este nervio a las membranas adyacentes, sin alteración del régimen membranal supuesto.
La fig. (7) muestra una vista lateral de la cáscara, con su respectivo nervio. Como se ve en la misma, el peso de esa nervadura as variable y función de y.
Llamando g_{a} a ese peso, γ al peso especifico y c a su altura, resulta:

$$
\mathrm{g}_{\mathrm{u}}=\gamma \mathrm{dc}
$$

y a su vez;

$$
c=h \cdot z-h-h\left(\frac{\left.a\right|^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{\left.a\right|^{2} y^{2}}{a^{2} b^{2}}\right)
$$

que reemplazando valores resulta:

$$
c=0,48\left(1-\frac{y^{2}}{100}\right)
$$

por lo tanto:

$$
\begin{gathered}
g_{\mathrm{n}}-0,48\left(1-\frac{y^{2}}{100}\right), 2,4 \cdot 0,20 \\
g_{\mathrm{n}}-0,23 .\left(1-\frac{y^{2}}{100}\right) \mathrm{t} / \mathrm{m}
\end{gathered}
$$

En la fig. 6_{A} se observa que el paso g_{ε} puade ser descompuesto según las tangentes a la cascara, de modo de obtener dos fuerzas distribuidas sobre los bordes (Nx), las que a su vez, proyectadas sobre el plano horizontal, nos suministran los valores de $\bar{N} x$ que deberemos imponer como condición de bordo para equilibrar el peso g_{n}.

Recordando entonces que tọ $\varphi-\mathrm{P}_{1}, \overline{\mathrm{~N}} \times$ será:

$$
\bar{N} x=\frac{g_{a}}{2 \operatorname{tg}_{\varphi}}=\frac{g_{a}}{2 p l}
$$

conde se ha llamado pl al valor que toma p para $\mathrm{x}=\mathrm{al}$ y reemp'azado $\mathrm{pl}=\frac{\text { al }}{5}\left(1-\frac{\mathrm{y}^{2}}{100}\right)-0,9\left(1-\frac{\mathrm{y}^{2}}{100}\right)$

$$
\bar{N} x=\frac{0,23\left(1-\frac{y^{2}}{100}\right)}{0,9\left(1-\frac{y^{2}}{100}\right) 2}=0,125 \mathrm{t} / \mathrm{m}
$$

N\times resulta asi constante a lo largo de todo el borde, pero ello obedece a un caso particular de este problema, y no hay obstáculo alguno para asignarle un valor arbitrario variable y, función de y.
Derivando z y aplicando la ecuación (6) para $\bar{N} x y-0$ obtendremos:
$p=\frac{x}{5}\left(1-\frac{y^{2}}{100}\right) \quad r=\left(1-\frac{y^{2}}{100}\right) \frac{1}{5}$
$q-\frac{y}{20}\left(1-\frac{x^{2}}{25}\right) \quad t-\frac{1}{20}\left(1-\frac{x^{2}}{25}\right)$
$\delta--\frac{1}{\gamma}\left(\Sigma_{1} \cdot \bar{N} x+\eta \cdot \bar{N} y\right)--\frac{1}{\gamma}\left(\frac{r \bar{N} x+t \bar{N} y}{\tau}\right)$

$$
\bar{N} y--\frac{\tau y \delta+r \bar{N} x}{t}
$$

FIGURA 6a

FIGUAA ?
y recmplazando valores:
$\vec{N} y-\overline{ } \sqrt{1+\frac{x^{2}}{25}\left(1-\frac{y^{2}}{100}\right)^{2}+\frac{y^{2}}{400}\left(1-\frac{x^{2}}{25}\right)^{2}}-$
Ny

$$
\frac{1}{20}\left(1-\frac{x^{2}}{25}\right)
$$

$$
-\frac{0,125 \cdot \frac{1}{5}\left(1-\frac{y^{2}}{100}\right)}{\frac{1}{20}\left(1-\frac{x^{2}}{25}\right)}
$$

Esta expresión se satisface para infinitos pares de valores δ y $\overline{\mathrm{N}} \mathrm{y}$. Pero para cumplir las hipótesis adoptadas, $\bar{N} y$ debe ser independiente de y.y adernás δ debe ser mayor o igual que el minimo admisible.
Para la confección del cuadro siguiente se ha procedido del modo que a continuación se detalla:
Fijado un valor de la abscisa x y un espesor δ, se calcula $\bar{N} y$ con un valor cualquiera de y. Para la misma abscisa x, con el $\bar{N} y$ ballado y considerado constante, se han ca'culado los diversos valores de δ al variar y. Si el espesor resultara en algún punto inferior al admisible, se recomienza la operación partiendo de un δ inicial mayor que el primero adoptado.
Aunque el presente trabajo no pretende abordar el estudio de las deformaciones, es oportuno destacar que las fibras 03.6 y 2-5-8 (o cualquier otra paralcla a éstas) tienen muy diferente comportamiento elástico. En efecto, bajo la acción de los esfuerzos Ny que las solicitan en forma axial, ambas tienden a reducir su longitud, en proporción a sus respectivas tensiones de compresión. Pero la fibra central, mucho más peraltada, experimentará un descenso sensiblemente menor que la de borde. Como esta discontinuidad geométrica no es posible, se generarán esfuerzos cortantes, (y por ende momentos flectores), que tenderán a eliminarla, y que de ningún modo pueden ignorarse en estructuras de dimensiones importantes.

Punto	x	y	z	$\delta(\mathrm{~cm})$	$\overline{\mathrm{N} y}$
0	0	0	0	$6 .$.	$-3,48$
1	2,25	0	0,507	$5 .-$	$-3,92$
2	4,50	0	2,02	$4,-$	$-16,20$
3	0	$5 .-$	0,625	6,3	$-3,48$
4	2,25	$5 .-$	0,403	5,3	$-3,92$
5	4,50	$5 .-$	0,86	6,8	$-16,20$
6	0	$10 .-$	2,50	6,5	$-3,48$
7	2,25	$10 .-$	2,50	$6 .-$	$-3,92$
8	450	$10 .-$	2,50	6,4	$-16,20$

FGURA a

En la tig. 8 se muestra en forma esquemática la distribución de los esfuerzos a lo largo de los bordes de la membrana.

Las verdaderas tensiones generadas en la membrana, Nx y Ny se pueden ahora calcu'ar en cada punto que so desee, mediante las conocidas formulas de desproyección:

$$
N x-\sqrt{\frac{1+p^{2}}{1+q^{2}}} N \sqrt{x} ; \quad N y-1 \overline{\frac{1+q^{2}}{1+p^{2}}} \overline{N y}
$$

ii) Membranas de bordos no paralelos a los ejes $X-Y$.

Agruparemos en este sagundo tipo, a aquellas cáscaras cuyos bordes proyectados sobre el plano horizontal, sean segmentos de recta no paralelos a los ejes X-Y. En la fig. 9 supondremos que el segmento $A B$ es la proyección de un borde de la membrana sobre el plano $X-0-Y$, siendo α el ángulo formado por $A B$ con el ejo Y, Además X^{\prime}, Y^{\prime} son las direcciones normal y paralela, respectivamente, a la dirección α.
Recordando las formulas que definen las tensiones $\bar{N} x^{\prime} y^{\prime}$ y $\bar{N} x^{\prime}$ según el ángulo α, en función de las $\overline{\mathrm{N} x y}, \overline{\mathrm{~N}} \mathrm{x}$ que caracterizan la dirección de los ejes X-Y('):
$\bar{N} x^{\prime}-\bar{N} x \cos ^{2} \alpha+\bar{N} y \operatorname{sen}^{2} \alpha+2 \bar{N} x y \operatorname{sen} a \cos \alpha$

Estableceremos a continuación las condiciones que deben cumplirse para que un borde tal como AB se comporte como "borde libre", es decir que esté excento do todo estuerzo sea normal o de resbalamionto. En ese caso será

$$
\bar{N} x^{\prime}-\bar{N} x^{\prime} y^{\prime}=0
$$

FIGUPR 9
y en las (8) y (9) deberá verificarse:

$$
\begin{equation*}
\bar{N} x--\bar{N} x y, \operatorname{tg} \alpha ; \quad \bar{N} y=\cdot \frac{\bar{N} x y}{\operatorname{tg} \alpha} \tag{10}
\end{equation*}
$$

Expresiones éstas que podamos reemplazar en la (6) obteniendo:

$$
\begin{equation*}
\delta-\frac{\overline{\mathrm{N}} x y}{\gamma}\left(£ . \operatorname{tg} \alpha+\frac{\eta}{\operatorname{tg} \alpha}-2 m\right) \tag{11}
\end{equation*}
$$

La aplicación de la (11) libera al borde $A B$ de la fig. 9, de todo esfuerzo. Las direcciones $X^{\prime}-Y^{\prime}$ seran entonces direcciones principales y el segmento $A-O-B$ de membrana se ve-
(') Las scuaciones (8) y (9) corresponden a un cettado pleno de tersiones, y sülo exprssan una releción entro megnitudes ficticias que, en general, no es cumplida sor las magnitudes verduderas correlativas, ealvo cuando 108 parármelrus adquileren delsem inados valores partioulseres. Puescen usarse estas ecuasiones on reemplezo do las exectes, cun tanta mayor sproxima cion, cunnto más pequeñes seen los valocse absolutos de p y q. (ciscaras aplanadss).
rá solicitado sólo en la dirección paralela al eje Y^{\prime}, ya que que introducidas en (6);
en todo punto será:

$$
\bar{N} x^{\prime}=0 ; \bar{N} x^{\prime} y^{\prime}=0
$$

Dicho de otro modo, la expresión (10) faculta al proyectista a elegir las isostaticas, mediante la elección del ángulo α. La estructura se comportarí como un haz de arcos - traccionados o comprimidos - todos ellos contenidos en planos paralelos a y^{\prime}. Como es evidente, estas afirmaciones son igualmente válidas para el caso de que $A B$ no sea el borde de la cáscara sino una dirección arbitraria.
Agreguemos que, dado que la cantidad entre paréntesis que figura en la ecuación (11), se anula en general para las direcciones α_{e} tales que:

$$
\operatorname{tg} \alpha_{0}-\frac{s \pm \sqrt{s^{2}-r t}}{r}
$$

no siempre será posible la obtención de bordes libres, si sus direcciones no se eligen acertadamente para la región y el tipo do superflicie consideradas.
Las relaciones (10) se pueden escribir también de la siguiente forma:

$$
\begin{array}{lll}
\bar{N} x-\bar{N} y \operatorname{tg}^{2} \alpha & (12) & z-\frac{x^{2}}{40}+\frac{y^{2}}{10} \\
\bar{N} x y=-\bar{N} y \operatorname{tg} \alpha & (13) & \tag{13}
\end{array}
$$

Ejemplo N7 5. Paraboloide eliptico de planta romboidal, sujeto a las siguientes condiciones: (fig. 10)
a) Los cuatro bordes deberán estar libres de todo esfuerzo proveniente de la membrana, prescindiéndose por lo tanto de las nervaduras de borde.
b) La cáscara quedará soportada por dos arcos rígidos normales entre sí, cuyos extremos coinciden con los vértices del romboide. El peso propio de estos arcos no debe introducir perturbaciones en el régimen membranal supuesto. Esta condición no excluye, claro está, las perturbaciones debidas a las deformaciones que sufren dichos arcos, por estar somotidos a importantes momentos flectores. Pero este efecto indeseable, puede atenuarse en la medida en que las secciones proyectadas sean suficientemente robustas, y de ahi la importancia que merece la consideración del paso propio.
Son datos, entonces, la ecuación de la superficie:

y las coordenadas de los vérticas del romboide:

$$
\begin{aligned}
& x 1=10 ; y 1=0 \\
& x 5=-20 ; y 5=0 \\
& x 3=-6 ; y 3= \pm 9,55
\end{aligned}
$$

en consecuencia los ángulos $\alpha 1$ y $\alpha 2$ tendrán por tangentes:

$$
\operatorname{tg} \alpha,-\frac{16}{9,55}=1,68 \quad ; \quad \operatorname{tg} \alpha_{2}=\frac{14}{9,55}=1,47
$$

Derivando z se obtiene:

$$
\begin{aligned}
& p-\frac{x}{20} ; \quad r=\frac{1}{20} \\
& q-\frac{y}{5} ; \quad t-\frac{1}{5}
\end{aligned}
$$

Con estos valores la ecuación (14) resulta:
$\delta=-\frac{1}{2,4} \frac{1}{\sqrt{1+\frac{x^{2}}{400}+\frac{y^{2}}{25}}}\left(1,68^{?} \cdot \frac{1}{20}+\frac{1}{5}\right) N_{y}$ $\delta_{1}=-\frac{0,142}{\sqrt{1+\frac{x^{2}}{400}+\frac{y^{2}}{25}}} \tilde{N} y_{1}=-\mu_{1} \bar{N} y_{1}$

El sub-indice 1 que afecta a los parámatros, indica que los mismos corresponden al cuadrante señalado en la fig. 10
con el número 1. Conviene recordar que los cuatro cuadrantes pueden resolverse como cáscaras independientes entre si, y el conjunto de valores que arroje el cálculo para cada uno de ellos será distinto del de los demás. Si conviniera, como efectivamente ocurre en nuestro caso, alguno de los parámetros puede trasladarse como dato al cuadrante contiguo, de la manera que se verá más adelante.

Cuadro de valores - Cuadrante № 1

Para resolver el cuadrante ${ }^{N} 92$ impondremos la condición:

$$
\bar{N} x_{1}=\bar{N} x_{2}-1,73 \mathrm{t} / \mathrm{m}
$$

con lo cual el arco de sustentación correspondiente a la diagonal menor del romboide, quedará libre de las cargas que lo solicitarian de no cancelarse entre si los esfuerzos normales actuantes sobre el mismo.
A su vez, y por aplicación de las ecuaciones (12) y (13) se tendrá:

$$
\overline{\mathrm{Ny}}-\frac{\overline{\mathrm{N} x 2}}{\operatorname{tg} 2 a_{2}}=\frac{-1,73}{1,47^{2}}=-0,80 \mathrm{t} / \mathrm{m}
$$

$$
\dot{N} x y 2-\cdot \operatorname{N} y 2 \operatorname{tg} \alpha_{2}=-(-0,80) \cdot 1,47=1,17 \mathrm{t} / \mathrm{m}
$$

Los espesores δ_{z} del segundo cuacrante se obtienen en forme directa modiante la expresión (14):
$8_{2}=\cdots \frac{(-0,80)}{2,4} \frac{\left(1,47^{2} \cdot \frac{1}{20}+\frac{1}{5}\right)}{\sqrt{1+\frac{x^{2}}{400}+\frac{y^{2}}{25}}}=-\frac{0,103}{1+\frac{x^{2}}{400}+\frac{y^{2}}{25}}$
Los valores que arroja esta fórmula se resumen en el siguiente cuadro:
Cuadro de valores - Cuadrante $\mathrm{N}^{\circ} 2$

Punto	x	y	$8(\mathrm{~cm})$
3	$-6-$	9,55	4,7
4	$-13-$	4,77	6,7
5	$-20 .-$	$0 .-$	7,3
6	$-13-$	$0,-$	8,7
7	$-6 .-$	$0 .-$	9,9

Para abordar el punto b) de oste ejemplo, serán datos: (fig, 11)
Ancho de los nervios $b-0,40 \mathrm{~m}$
Altura en la clave δ_{a}. $-0,70 \mathrm{~m}$ (corresponde al punto $\mathrm{N}^{\circ} 7$). Consideremos en primer término el arco coincidente con la diagonal menor.
Si ponsamos a este arco como perteneciente al sector de cáscara que se extiende hacia su derecha en el dibujo, y recordando la expresión general (6) para la suparficie que nos ocupa ($m=0$ por ser $\mathrm{s}=0$):

$$
\delta_{\mathrm{a}}=-\frac{1}{\gamma}\left(£, \overline{\mathrm{~N}} \mathrm{x}_{\mathrm{a}}+\eta \cdot \overline{\mathrm{Ny}} \mathrm{y}_{\mathrm{a}}\right)
$$

El sub-índico a identifica a los parámetros correspondientes al arco.
El esfuerzo $\bar{N} x_{\text {a }}$ viene impucsto por la membrana y no es otro que el ya oalculado:

$$
\overline{\mathrm{N}} \times 1=1,73 \mathrm{t} / \mathrm{m}
$$

entoncas, reemplazando valores:
$\delta_{a}-\cdots \frac{1}{2,4} \frac{1}{\sqrt{1+\frac{x^{2}}{400}+\frac{y^{2}}{25}}}\left[\frac{1}{20}(-1,73)+\frac{1}{5} \dot{N} y_{n}\right]$
y en el punto $N^{4} 7 \operatorname{con} x=-6,-; y-$ y $\delta_{a}-\delta_{a}=0,70 \mathrm{~m}$ será:

$$
\dot{\mathrm{N}} \mathrm{y}_{a}=-8,35 \mathrm{t} / \mathrm{m}
$$

Que es prácticamente conslante on todo el ancho b del nervio y cueintroducido en la ecuación anterior y operando:

$$
\delta_{y}-\frac{0,73}{\sqrt{1 \frac{x^{2}}{400}-\frac{y^{2}}{25}}}
$$

conduce a los siguientes espesores del arco:

x	y	$\delta_{4}(m)$
$-6 .-$	0	0,70
$-6 .-$	4	0,65
$-6 .-$	7	0,42
$-6 .-$	9,55	0,33

Por el mismo camino puede resolverse el arco restante con la sola precaución de incluir en la tórmula correspondiente el valor de $\overline{N y}$, obien el de $\overline{\mathrm{Ny}}$., ya sea se consideren puntos a la derecha de la clave o a su izquierda. respectivamente.

Ejemplo № 6 - Paraboloide hiporbálico de borde curvo no paralelo a los ejos coordenados. (figuras 12 y 13).
Repitiondo las operaciones del ejemp'o anterior tendremos:
$z-\cdots \frac{x y}{4} ; a=8 m ; b=12 m ; \operatorname{tg}_{\alpha}-\frac{8}{12}=0,666$
Derivando:

$$
\begin{aligned}
& p=-\frac{y}{4} ; r-0 ; x=0 \\
& q--\frac{x}{4} ; t-0 ; n-0 \\
& s--\frac{1}{4} \\
& \delta=-(-2 m \cdot \operatorname{tg} \alpha) \frac{\bar{N} y}{\gamma}--2,0,666 \quad x \\
& x-\frac{1}{4} \frac{\text { Ny }}{2,4} \\
& \frac{4}{4} \sqrt{16+x^{2}+y^{2}} \\
& \delta-\frac{-0,555}{\sqrt{16+x^{2}-y^{2}}} \dot{\mathrm{Ny}}=-\mu \dot{\mathrm{N} y}
\end{aligned}
$$

Punto $x \quad y \quad z \quad \mu \quad \delta(\mathrm{~cm}) \quad \mathrm{Nyt} / \mathrm{m} \quad \mathrm{N} x \mathrm{t} / \mathrm{m} \quad \mathrm{N} x y t / m$

0	0	0	0	0,139	12,6

$\begin{array}{llllll}1 & 4 & 0 & 0 & 0,098 & 8,9\end{array}$
$\begin{array}{llllll}2 & 8 & 0 & 0 & 0,062 & 5,6\end{array}$
$\begin{array}{lllllllll}3 & 0 & 6 & 0 & 0,077 & 7 .- & -0,91 & -0,402 & 0,605 \\ 4 & 4 & 6 & 6 & 0,057 & 5.2 & & & \end{array}$
$\begin{array}{llllll}5 & 0 & 12 & 0 & 0,044 & 4 .-\end{array}$
Ejemplo № 7 - Membrana de berde libre de forma irregular. Si la proyección horizontal del borde considerado presenta forma irregu'ar, es posible resolver el problema mediante la apliacción de las expresiones (6) y (11) recurriendo al siguiente procedimiento gráfico: (fig. 14)
Podremos por ejomp.o, determinar el espesor δ p en un punto genérico P, adoptando para toda la suparficie un valor cualqulera de $\bar{N} x y$ (puede ser igual a la unidad) y que en la figura está representando por el segmento KL. Si a partir de K se trazan KI y KJ , de direcciones paralela y perpendiculer, respectivamente, a las tangentes b-b y a-a trazadas por los puntos B y A del borde, quedarán determinados los segmentos LI y L.J de modo que:

$$
\mathrm{LI}=\overline{\mathrm{N}} \mathrm{y}_{\mathrm{D}} ; \quad \mathrm{WJ}=\overline{\mathrm{N}} \mathrm{x}_{\mathrm{V}}
$$

como se deduce fácilmente de la figura, recordando las acuaclones (10), que, adamés parmiten determinar los respectivas signos. Con los va'ores asi conocidos de las tensiones өn el punto P , se puede calcular $\hat{\delta}_{\mathrm{p}}$, con ayuda de la (6). Un punto tal como el Q, de abscisa igual al P, estaré sometido a un esfurzo normal $\overline{N y}$, tal que:

$$
\dot{N} y_{I}-\dot{N} y_{0}
$$

dado que Ny no puede ser función sino de la variable x. En cambio $\bar{N} x_{4}$ serâ en general distinto a $\bar{N} x p$. dependiendo ello de la tangente trazada al contorno en el punto C , de igual ordenada que Q.

-
(8) y (9), en la cuales resultará que $\overline{N x}$ es constante para cualquier diracción que se elija, al mismo tiempo que resulta nulo $N x^{\prime} y^{\prime}$.
En la fig. 15 se ha representado en planta y corte una membrana de revolución, supucsta apoyada en su contorno mediante el

FIGURA 15
mecanismo indicado, que sólo permite el libre desplazamiento radial del anillo de base. Si, de acuerdo con las hipótesis adoptadas, aplicamos a la base las cargas uniformemente distribuidas:
$\bar{N} x-\bar{N} y=\tilde{N}^{\prime}$ ello equivaldrá a solicitar todo el perimetro de apoyo con la carga radial constante $\overline{\mathrm{N}}$, que también representa la proyección horizontal del esfuerzo membranal para todo punlo y dirección considerada.
La aplicación de la carga radial \bar{N} se puede materializar con sancillez, mediante la puesta en tensión de la armadura del anillo da base, con un estuerzo:

$$
V-\bar{N} \cdot R_{0}
$$

donde R_{5} es el radio de dicho anillo. A su vez la membrana reaccianará con un өefuerzo unitario de compresión:

$$
N=N x=N y-\frac{\dot{N}}{\cos \rho}
$$

y el haz de bielas qua sirve de soporte a la estructura deberá transmitir a su fundación, una carga distribuida vertical G tal que:

$$
G=\bar{N} \operatorname{tg} \rho,
$$

Ejemplo N 98

La superficie esférica de ecuación: $R^{2}-z^{2}-x^{2}+y^{2}-\varphi_{x}$
tlene un radio $\mathrm{R}-20 \mathrm{~m}$. y un ángulo de. abertura máximo ρ_{0} $=650$. Las derivadas sucesivas de φ_{8} son:

$$
\varphi_{x}^{\prime}--2 z \quad ; \quad \psi^{\prime \prime} z--2
$$

que reemplazadas en (18):
$\omega-\frac{\sqrt{4 z^{2}+4 \mathrm{R}^{2}-4 \mathrm{z}^{2}}}{1\left(1+\frac{2\left(\mathrm{R}^{2}-z^{2}\right)}{4 z^{2}}\right)}=\frac{2 R z^{2}}{2\left(z^{2}+R^{2}\right)}-\frac{R \cos ^{8} \rho}{1+\cos ^{2} \rho}$

Si adoptamos $\delta \mathrm{min}=0,04 \mathrm{~m}$. de la expresión (17) obtendremos:

$2(\mathrm{~m})$	ρ^{0}	$\omega(\mathrm{~m})$	$\delta(\mathrm{cm})$	$\overline{\mathrm{N}}(\mathrm{t} / \mathrm{m})$
$-20-$	0	$10 .-$	$4 .-$	
$-17,32$	30	8,56	4,6	$-0,90$
$-10-$	60	$4,-$	$10,-$	
$-8 .-$	65	3,04	$13-$	

La armadura del anillo de base deberá ser puesta en tensión con un esfuerzo:
$P-0,96 \cdot 18,10=17,4 \mathrm{t}$., siendo $R_{0}-18,10 \mathrm{~m}$. el radio de dicho anillo.
Toda la estructura resulta asi comprimida para cualquier dirección que se elija y la deformación impuesta por el anillo postensado, es perfectamennte coherente con la contracción radial que sufren los planos paralelos contiguos al mismo. Si esta misma cuipula se construyese con espesor uniforme, como os sabido, todo paralelo ubicado por debajo del ángulo do abertura $51^{\circ} 49^{\prime}$ quedarla sometido a esfuerzos de tracción, y la puesta en tensión del anillo de base generaria deformaciones on contradicción con el estado membranal, y por ende, momentos flectores.

Ejemplo N? 9

Cáscara de contorno arbitrario, suspendida del mismo: La fig. (16 a) representa un sector de paraboloide de revolución limitado por su intersección con un plano normal al plano del dibujo, y cuya traza sobre el mismo és el segmento $A B$. La fig. 16 b , es la proyección de dicha superficie sobre el plano $x-y$. La ecuación que define la superficie elegida es:

$$
\varphi_{z}--45 z-x^{3}+y^{2}
$$

y por lo tanto:

$$
\varphi_{8}^{\prime}=-45-\quad y \varphi_{3}^{\prime \prime}-0
$$

de donde:

$$
\omega=\frac{\sqrt{45^{2}-4.45 . z}}{4}-11,25 \sqrt{7-(0,088 z}
$$

expresión con la cual se ha calculado el cuadro sigulente:

Punto	x	z	ω	$\hat{c}(\mathrm{~cm})$	$\overline{\mathrm{N}} t / \mathrm{m}$
0	0	0	11,25	6,6	
1	3	$-0,2$	11,26	6,6	
2	6	$-0,8$	11,90	6,3	
3	9	$-1,8$	12,40	6.	$\overline{\mathrm{~N}}=1,8 \quad \mathrm{t} / \mathrm{m}$ (trac,i)
4	12	$-3,2$	13,00	5,7	
5	15	$-5,0$	13,50	5,5	
6	20	$-8,9$	$15-$	5	

La cascara resulta sometida a un esfuerzo de tracción \bar{N}-proyección horizontal del vordadero esfuerzo de membranaque es uniforme para todo punto y dirección, e independients
de la forma de su contorno. Aún para una planta como la indicada en linea punteada en la fig. 16 b , los respectivos espesores i y los vaiores de $\overline{\mathrm{N}}_{\mathrm{i}}$ son los mismos que se han calculado, siempre que los bordes puedan admitir los esfuerzos normales correspondientes.
Los circulos concentricos de centro o trazados de la misma ifgura, representnan líneas que unen puntos de igual espesor, por ser z - cte.

FIGURA is

Agradecimientos

No pocas modificaciones introducidas en la versión original del prosento articulo, se deben a las oportunas crificas formuladas por el ing. Oscar A. Andrés, a qulen agradezoo sinceramente.
También deseo expresar mi reconocimiento al Ing. M. D. Altman, por la discusión de algunos temas relativos a oste trabajo.

Bibliografia.

Faber C., Las estructuras de Condela. C.E.C.S.A. Méjico - 1970.
V. Murashev - E. Sigalov - V. Eaikcv., Desing of Reinforced concrete structures. Mir sublishers - Moacu - 1968.
Olivera Lopez A. Onálisis eálcuio y dieonic de lae Bovedas de Cascara . C.E.C.S.A. Mejico - 1969.

Margarit y Buxedé. Calculo de estructures en Paraboloide Hipersólico, Madrid. Tonda, J. A. y E., Paraboloides hiparboblicns, Limusa - Wiley S.A. Mejico. 1972. Pilareki L. I. - Calsulo de casoarones de concrato armado. - Mejce. 1961. Banerjee S. P., Une méhode numerique pour le calcul des vsiles ... - Béton Arme. No 24. 1960.
Andres O. A. Membrane shalls having the form of second onder surfaces ... - IA8S Bulletin, No 34, 7963.

Roy Postor J., Csleulo intinitesimal. Bs. Aires 1944.
Hütle. Manual del Ingeniere. Tomo I.
Fflüger A. Estatics elemental de les oáscarse. EUDEBA. 1964.

